Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069344

RESUMO

Previously, the main studies were focused on viruses that cause disease in commercial and farmed shellfish and cause damage to food enterprises (for example, Ostreavirusostreidmalaco1, Aurivirus haliotidmalaco1 and Aquabirnavirus tellinae). Advances in high-throughput sequencing technologies have extended the studies to natural populations of mollusks (and other invertebrates) as unexplored niches of viral diversity and possible sources of emerging diseases. These studies have revealed a huge diversity of mostly previously unknown viruses and filled gaps in the evolutionary history of viruses. In the present study, we estimated the viral diversity in samples of the Baikal endemic gastropod Benedictia baicalensis using metatranscriptomic analysis (total RNA-sequencing); we were able to identify a wide variety of RNA-containing viruses in four samples (pools) of mollusks collected at three stations of Lake Baikal. Most of the identified viral genomes (scaffolds) had only distant similarities to known viruses or (in most cases) to metagenome-assembled viral genomes from various natural samples (mollusks, crustaceans, insects and others) mainly from freshwater ecosystems. We were able to identify viruses similar to those previously identified in mollusks (in particular to the picornaviruses Biomphalaria virus 1 and Biomphalaria virus 3 from the freshwater gastropods); it is possible that picorna-like viruses (as well as a number of other identified viruses) are pathogenic for Baikal gastropods. Our results also suggested that Baikal mollusks, like other species, may bioaccumulate or serve as a reservoir for numerous viruses that infect a variety of organisms (including vertebrates).


Assuntos
Gastrópodes , Vírus de RNA , Vírus , Animais , Gastrópodes/genética , Ecossistema , Vírus/genética , Lagos , Vírus de RNA/genética , Genoma Viral , RNA , Filogenia
2.
Microorganisms ; 11(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512951

RESUMO

The proliferation of benthic cyanobacteria has been observed in Lake Baikal since 2011 and is a vivid manifestation of the ecological crisis occurring in the littoral zone. The cyanobacterium Symplocastrum sp. has formed massive fouling on all types of benthic substrates, including endemic Baikal sponges. The strain BBK-W-15 (=IPPAS B-2062T), which was isolated from sponge fouling in 2015, was used for further taxonomic determination. A polyphasic approach revealed that it is a cryptic taxon of cyanobacteria. Morphological evaluation of the strain indicated the presence of cylindrical filaments with isodiametric cells enclosed in individual sheaths and coleodesmoid false branching. Strain ultrastructure (fascicular thylakoids and type C cell division) is characteristic of the Microcoleaceae and Coleofasciculaceae families. An integrated analysis that included 16S rRNA gene phylogeny, conserved protein phylogeny and whole-genome comparisons indicated the unique position of BBK-W-15, thus supporting the proposed delineation of the new genus Limnofasciculus. Through characterisation by morphology, 16S, ITS and genomic analysis, a new cyanobacterium of the family Coleofasciculaceae Limnofasciculus baicalensis gen. et sp. nov. was described.

3.
Mar Pollut Bull ; 182: 114025, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35963229

RESUMO

To evaluate the prospects of using Baikal endemic sponges as bioindicators of chemical elements pollution, the elemental composition of sponges, water and substrate samples, collected in two areas with different levels of anthropogenic loading of the Baikal Lake, was determined using two analytical techniques. The content of Cl, Ca, V, Zn, As, Se, Ba, Cd, and Cu in the sponges collected in Listvennichny Bay was significantly higher than in Bolshye Koty Bay. The values of the pollution indices point at the slight to moderate pollution of the substrates. According to the bioaccumulation factor values, sponges accumulate mainly Cd, Cu and Br from the substrate, and the main part of the elements from water. The distribution of elements longwise the sponges and their intraspecific variation were evaluated. It was shown that Lubomirskia baikalensis sponges were suitable bioindicators to assess the pollution of Lake Baikal.


Assuntos
Poríferos , Poluentes Químicos da Água , Animais , Cádmio , Biomarcadores Ambientais , Lagos , Água
4.
Biology (Basel) ; 10(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34681071

RESUMO

Lake Baikal is a natural laboratory for the study of species diversity and evolution, as a unique freshwater ecosystem meeting the all of the main criteria of the World Heritage Convention. However, despite many years of research, the true biodiversity of the lake is clearly insufficiently studied, especially that of deep-water benthic sessile organisms. For the first time, plastic waste was raised from depths of 110 to 190 m of Lake Baikal. The aim of this study was to examine the biological community inhabiting the plastic substrate using morphological and molecular genetic analysis. Fragments of plastic packaging materials were densely populated: bryozoans, leeches and their cocoons, capsules of gastropod eggs, and turbellaria cocoons were found. All the data obtained as a result of an analysis of the nucleotide sequences of the standard bar-coding fragment of the mitochondrial genome turned out to be unique. Our results demonstrate the prospects for conducting comprehensive studies of artificial substrates to determine the true biodiversity of benthos in the abyssal zone of Lake Baikal.

5.
Biology (Basel) ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34571780

RESUMO

Recent studies have revealed how the freshwater biota of Lake Baikal responds to climate change and anthropogenic impacts. We studied phyto- and zooplankton, as well as phyto- and zoobenthos, in the open coastal waters of the southern basin of the lake and of Listvennichny Bay. A total of 180 aquatic organism taxa were recorded. The response of the Baikal ecosystem to climate change can be traced by changes in the species composition of planktonic communities of the lake's open coasts in summer. The key species were thermophilic the Anabaena lemmermannii P. Richt. (Fij = +0.7) blue-green algae, the Asplanchna priodonta Gosse (Fij = +0.6) rotifers in 2016, the Rhodomonas pusilla (Bachm.) Javorn. (Fij = +0.5) cold-loving algae, and the Cyclops kolensis Lilljeborg (Fij = +0.9) copepods in the past century. The proportion of Chlorophyta decreased from 63% to 17%; the Cyanophyta increased from 3% to 11% in the total biomass of phytoplankton; and the proportion of Cladocera and Rotifera increased to 26% and 11% in the biomass of zooplankton, respectively. Human activity makes an additional contribution to the eutrophication of coastal waters. The Dinobryon species, the cosmopolitan Asterionella formosa Hass. and Fragilaria radians Kütz., dominated phytoplankton, and filamentous algae, Spirogyra, dominated at the bottom in the area with anthropogenic impact. The trophic level was higher than at the unaffected background site: the saprobity index varied from 1.45 to 2.17; the ratio of eutrophic species to oligotrophic species ranged from 1:2 to 3:1, and the ratio of mesosaprobiont biomass to endemics biomass ranged from 2:1 to 7:1. Currently, the boundaries of eutrophication zones of shallow waters in Lake Baikal are expanding, and its coastal zone has acquired features typical of freshwater bodies of the eutrophic type.

6.
Microb Ecol ; 75(4): 1024-1034, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29098357

RESUMO

Mass mortality events have led to a collapse of the sponge fauna of Lake Baikal. We describe a new Brown Rot Syndrome affecting the endemic species Lubomirskia baicalensis. The main symptoms are the appearance of brown patches at the sponge surface, necrosis, and cyanobacterial fouling. 16S rRNA gene sequencing was used to characterize the bacterial community of healthy versus diseased sponges, in order to identify putative pathogens. The relative abundance of 89 eubacterial OTUs out of 340 detected has significantly changed between healthy and diseased groups. This can be explained by the depletion of host-specific prokaryotes and by the appearance and proliferation of disease-specific OTUs. In diseased sponges, the most represented OTUs belong to the families Oscillatoriaceae, Cytophagaceae, Flavobacteriaceae, Chitinophagaceae, Sphingobacteriaceae, Burkholderiaceae, Rhodobacteraceae, Comamonadaceae, Oxalobacteraceae, and Xanthomonadaceae. Although these families may contain pathogenic agents, the primary causes of changes in the sponge bacterial community and their relationship with Brown Rot Syndrome remain unclear. A better understanding of this ecological crisis will thus require a more integrative approach.


Assuntos
Doenças dos Animais/microbiologia , Bactérias/classificação , Consórcios Microbianos , Poríferos/microbiologia , Doenças dos Animais/epidemiologia , Animais , Bactérias/genética , Biodiversidade , Cianobactérias , Especificidade de Hospedeiro , Lagos/química , Lagos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Federação Russa
7.
Acta Parasitol ; 61(2): 299-306, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078653

RESUMO

Diplomonadida are primitive flagellate protozoa, among which both commensals and pathogens have been recorded. To date, members of the genera Hexamita and Spironucleus have been reported in the digestive system of fish in the Baikal region. We determined the genetic diversity of Diplomonadida in fish of the genus Coregonus from south-eastern Siberia using molecular-genetic methods. Fish for analysis were caught in Lake Baikal and in the Barguzin, Nepa, Chechuy, and Kirenga rivers from 2010 to 2013. Gall bladders, hindguts and foreguts of 120 specimens of Coregonus migratorius representing three morpho-ecological groups, 25 specimens of Coregonus lavaretus baicalensis, 25 specimens of Coregonus tugun and 30 specimens of Coregonus lavaretus pidschian were analysed via amplification with primers specifically designed for eukaryotes. Amplicons positive for Diplomonadida were sequenced. A phylogenetic analysis revealed that diplomonad flagellates of whitefish from Southeastern Siberia belong to Spironucleus barkhanus. Positive Diplomonadida DNA samples were analysed with primers designed in the present study for the amplification of small subunits of ribosomal DNA fragments of S. barkhanus (about 1,430 bp) and sequenced. Phylogenetic analysis revealed inside the clade of S. barkhanus besides the cosmopolitan genotype from European salmon that was detected earlier in Baikalian grayling, a new genotype unique to the fish of the genus Coregonus from Lake Baikal.


Assuntos
Diplomonadida/classificação , Diplomonadida/genética , Variação Genética , Salmonidae/parasitologia , Animais , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Sistema Digestório/parasitologia , Diplomonadida/isolamento & purificação , Genes de RNAr , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...